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Semidiscrete Least-Squares Methods for Second Order 
Parabolic Problems With Nonhomogenous Data 

By J. Thomas King 

Abstract. Recently, Bramble and Thomde proposed semidiscrete least-squares methods 
for the heat equation. In this paper we extend these methods to variable coefficient parabolic 
operators with nonhomogeneous equations and boundary conditions. 

1. Introduction. Recently there has been much interest in variational methods 
for approximating the solution of parabolic problems (cf. [8], [12], [14]). 

For essential boundary conditions, the author proposed weighted least-squares 
methods for parabolic problems [10]. These methods are based on the ideas of Bramble 
and Schatz [3]. Another way of implementing the ideas of [3] to parabolic problems 
has been proposed by Bramble and Thomee [6]. In [6] the authors give semidiscrete 
least-squares methods for the heat equation under homogeneous boundary con- 
ditions. 

The purpose of this paper is to generalize the methods of [6] to variable coefficient 
second order parabolic operators with nonhomogeneous data. The error analysis 
given here will be similar to that of [6], however we need to significantly change some 
details. 

2. The Initial-Boundary Value Problem. Let ? be a bounded open domain 
in Euclidean N-space with boundary AQ, of class C' (cf. [1]). For 0 < T < X we put 
Q = O X (0, T1 and r = aQ X (0, T]. 

We shall consider, in Q, the parabolic operator L defined by 
N 

Lu = A(x, t)u-ut = E Dz,(aii(x, t)D.,u) - 

and the following initial-boundary value problem: 

(2.1) Lu = f in Q, u = g onlr, u(,) = uo in Q 

where f, g, u0 are given. We assume that A is uniformly elliptic in the closure of Q, 
Q, and for convenience assume that the coefficients ai, are in C"(Q). 

We will need the following function spaces. For k > 0, an integer, Hk(g) will 
denote the usual Sobolev space of order k on Q with norm 

_ _ ~~~~1/2 
(2.2) 1 ff1 1k = E flDal 12] 

where 1I411 = ( Xs 1x)12 dx) 1/2. 
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We will denote the corresponding inner product on H?(Q) = L2(Q) by ((a, . 
The inner product and norm on L2(Oa) will be denoted by (., * ) and I a I respectively. 

For the semidiscrete methods which follow we will need to introduce finite- 
dimensional subspaces of H2(Q) having certain approximation theoretic properties 
depending on a small parameter h. Specifically we will assume throughout this paper 
that Shr is any finite-dimensional subspace of H2(Q) having the following property: 

(*) For any u E H'(Q) with 2 < s < r there exists a constant C, independent 
of h and u, such that 

2 

inf E h 211u _- qji < Ch || |82 

OEShr ;-O 

Examples of such subspaces are contained in [2], [7], [9], and [13]. 

3. Implicit Semidiscrete Methods. In this section we give semidiscrete least- 
squares schemes for finding approximate solutions of the initial-boundary value 
problem using the subspaces Shr. The schemes proposed here are based on the classical 
implicit finite-difference approximation for L. 

Before making these ideas more precise we will need some notation. Let k = 
T/M where M is a positive integer and let to, = nk for n = 0,. , M. We will use 
the notation un = u(., t.) and A. = A(. , t.). 

We shall approximate the solution of problem (2.1) by a function of the form 

(3.1) v(x, t) = E c7(tM)(x) 
i=1 

where { 4}^ is a suitable local basis for Shr and c; is defined on the mesh: 0 < 
tj < ... < tm- , < T. 

The implicit approximation schemes are defined as follows: 
For given Shr having local basis I) }>-1 and given y satisfying 0 < y < 2, find 

a function v of the form (3.1) such that 

(i) ((u0 - v0, 4) = 0 for all q5 E S' and for n = 0, * , M - 1, 

(3.2) (ii) ((kf n+1 - n _ (k An+1 - l)vn+ 1l (k An+1 - 1))) 

+ k2h-27(gn+1 - vn+1 , l) = 0 for all E She 

We remark that the elements of Shr are not required to satisfy boundary con- 
ditions, and only L2 inner products are involved in the computation of v. The solution 
of (3.2), for each n, is determined by solving a linear system of algebraic equations 
whose coefficients depend only on F = {f, g, u0 }, h, k, and y. The linear system yields 
a symmetric matrix which is sparse if we take Shr to be a certain class of splines with 
a suitable local basis. Note also that we could choose v =_ u0 in place of (i) in (3.2). 

For notational simplicity it is convenient to introduce the following definitions. 
For u E H2(Q) we define the operator Lk u (kAn - 1)u. 

Let A be the product space H0(Q) X H0(Oa) with inner product 

[U, V] = ((I, f)) + k2h 2(g, g) 

where U = {f, g} and V = {f, g}. We put IIUHJA = [U, U]1/2. 

Let Tkn be the map {LknU, Ul,"} from H2(Q) into A. Then IITkUnUIA is a norm on 
H 2(Q as 
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Existence. We assume that u0 & H0(Q), ff C H0(Q), and gf & H0(&g) for 
each n = 1, , M. Since the matrix I ((be, 0i )) I is positive definite, (i) has a unique 
solution { c,0, , c1,'. Now suppose that { cl', , can} have been found; then 
(ii) has a unique solution if and only if the only solution of the system 

(3.3) [T~v8 Ikl < j _ a 

is the trivial solution. Multiplying (3.3) by cin+ ' and summing over j yields 
I I Tn+1 vn+ 1 12 = 0 0 

so that Lk +'v8+' = 0 in I and 0 = 0 on a U. Hence V 0. 
Error Analysis. We will need the following a priori inequality for the operator 

Lkn which is essentially proved in [6]. 
LEMMA 3.1. There exists a constant a ? 1 such that, for u C H2(0) and 

1 ? n < M, 

(3.4) 11ull2 < JILkutf' + ak"'IuI' 

We will also make use of the following lemma which is essentially proved in [6]. 
LEMMA 3.2. Suppose u CE H1(g) with 2 < s < r and CO > 0. If k > Coh41/3 

(0 ? y ? 2) then 

(3.5) inf IITk(u -IIA _ Ck h s-2fUj 
CeSr 

where C is independent of h, k, and u. 
We will also make use of the following easily proved estimate. 
LEMMA 3.3. Suppose an, bn, and Cn are nonnegative. If a ? 0, and, for n = 0, 

1, ,AfM- 1, 

a2 < b 2+1 + I+ O)a2 + C2+1 + 2(1 + M) 

then there exists a constant C, independent of M, such that 

max an < C{M"1' max bn + M max cn + ao} 
O5n5 M 05n? M O5n5M 

We are now in a position to analyze the error in scheme (3.2). Let u be the solution 
of (2.1), v be the solution of (3.2), and put e = u - v. 

THEOREM 3.1. If u(. , t) C H'(Q) for each t E (0, T1 with 2 _ s _ r and u C 
C2(Q), then, for k > a2/3h4-/3, we have 

(3.6) max ffenff ? C{h'f1uof!2 + kl/2h82 max Iflu'fl + k max ffDeu(., t)II}. 
0:5n5 M 1-,g 5n:5 M t E [0, TJ 

We remark that a is the constant of Lemma 3.1. 
Proof. We have from (3.4) that 

Iln+ 1 I 2 < I n+1 n+l1 12 + 1~/2 1 n+1 12 1 le'f ? IILk 'e 1'I' ak" Ie~~ 
so that, for k _ a 2/3h4,/3I 

(n+3) | 2 ?< |+ + 2 = [Tn+len+1, Tkn+ l] - [T en 1, Tkn+ I ]. 

Now let A C Shr be such that 

(3.8) [T'(u' - V ) Tkn+l'4] = 0 for all t C She 
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By an elementary application of Taylor's theorem we have 

(3*9) Lk~~~~~n+1 n+1 =kn+1 _ u pn+1 

where IIpn+11K ? Ck2 maxte [0,TJIDt2u(. , t)l. 

We now use (3.2) and (3.9) in (3.7) to yield 

n+(.0 e12 < ((en - n+ l Ln+ 1(v+ - 
_ n+1) + [T+en+, Tk -(U _ )] 

By virtue of (3.10) and the definition of n+l+l we then have 

(3.11) jje n+1j2 < ((en - fn+1, Ln+1(vn+1 - ,n+l)) + ||T1(Ul _ )||+1)A2 

We now estimate the first term on the right-hand side of (3.11). We subtract 
(3.8) from (3.2) and use the relation (3.9) to yield 

(3.12) [T - l(V 1 ) T 14)] = ((es - pn+l Lk+14)) 

where 5 E& Shr is arbitrary. Choosing d5 Vn+ 1 _ 
Vpfn+1 in (3.12) implies that 

In+l(n+l- _pn+l)l 12 < j((en - + Ln+ _ n 
+l))) l 

so that, by the Schwarz inequality, 

(3 . 1 3) | | n+ l(Vn+ l _ p{8+ l )l | < |1 en _ n+1ll (3.13) tILk (-~ ~/+1I je~ - pfll 

Using the Schwarz inequality and (3.13) in (3.11) yields 

(3.14) je~~1jjn+112 < jITn+l(un+l _ fan+1)II2 + |jen - pn'11i2 

so that 

(3 .1 5) |e|n+1112 ?< ||Tn+l(u+ 
l - o+ l)ti2 + je n 

12 + |jp|n+lj12 + 2 |et ||p|n-111. 

It follows from (3.15) by an application of Lemma 3.3 with ar = 0 that 

max I len ? C<k-1/2 max I 
I Tk,(un _ On) ItIA 

(3.16) 1 ?n? 
M l rns M 

+ jluo - volt + k-1 max Itp'lt} 

The result (3.6) follows from (3.16) by an application of Lemma 3.2 and 
property (*). 

4. Crank-Nicolson Semidiscrete Methods. The implicit schemes of the pre- 
vious section have, at best, order of convergence 0(k). In order to improve the order 
of convergence it is necessary to discretize the time variable with higher order ac- 
curacy. The schemes given here are based on a Crank-Nicolson type finite-difference 
approximation for the operator L. It will be shown that the order of convergence 
can be improved to 0(k2). 

We will use the notation U+ 1/2 = 2(Un + U+ 1). We shall again approximate 
the solution of problem (2.1) by a function of the form (3.1); however, we will now 
take v_ uo. We will use the notation Lknu = (kAn + 1)u. 

The approximation schemes are defined as follows: 
For a given Shr having local basis {p,}> and given y satisfying 0 ? Y 3 2, 

find a function of the form (3.1), with u0= vo, such that, for n = 0, * *, M - 1, 
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(4.1) ((kf1/2 n - Ln1 vn+ L n+1 0)) + k2h-2hy(gn+1 _ Vn+l ,) 0 

for all CE Shr. 
Error Analysis. We will again need an a priori inequality for the operator Lk/2, 

which is essentially proved in [6]. 
LEMMA 4.1. There is a constant ,3 > 1 such that, for u C: H2( Q) and 1 ? n < M, 

(4.2) I Lkl12uj 2 = (1 + k){ I jLk12uj2 + I luj2} 

Let u be the solution of (2.1), v be the solution of the Crank-Nicolson scheme 
(4.1), and put e = u - v. 

THEOREM 4.1. If u( , t) E H'(Q) for each t E (0, T] with 2 < s < r and u E 
C3(Q) then for k ? Coh 7, with CO ? max t23, a 2 } we have 

(4.3) max I lenI I C< /2hs-2 max Ilu'lIs + k2 max IID 3u(, t)l I 
1?n?M 1<n?M te[OTI) 

where a and ( are the constants of Lemmas 3.1 and 4.1 respectively and C is inde- 
pendent of h, k, and u. 

Note that we have assumed the more restrictive condition k > Coh'. 
Proof. As in the proof of Theorem 3.1 we have 

(4.4) 1 le || <Ik/e IA. 

Using the relation 

(4.5) Ln+1 = -1n+1/2 _ Ln1 U' + pn+l/2 

where 

Il n+1/211 < Ck3 max ID 3U((, t), 
tE[O, TI 

and arguments analogous to those in the proof of Theorem 3.1 it can be shown that 
the right-hand side of (4.4) is bounded by 

(4.6) 1jT k2 - f+)11 + 1((Lkl2en pn+l/2 Lk/2 (V - 

where Sn+ 1 
' 
r is defined such that 

(4.7) [ T~n+ (un+l _ 
V n+ 1), T+24)] = 0 for a ll 4 C S'. 

We estimate the last term in (4.6) by methods analogous to those used in the 
proof of Theorem 3.1. We subtract (4.7) from (4.1) and use the relation (4.5) to 
yield 

n+ n+ 1 n+ 1 n+ 1 / n n n+ 1/2 n+ 1 
(4.8) [Tk121(V - f+), Tk%14] = - X ~ n p/, Lk%'4)o 

where 4 & Shr is arbitrary. Choosing 4) v1 - 
n+ 1 in (4.8) implies that 

(4.9) j|L nl(Vn~ - 
_ 

n+)| | j<Ln 2en _ p n+1/2 

Hence, from (4.4) through (4.9), we conclude that, for 0 ? n < M - 1, 
(4 .1 ) I In + 1 1 12 < I1I Tkn+ 1en + 1 1 1 2 < |Tkn/+ 1(Un + 1 _ nBl )+/ I2 IIL/2 (4.10) Ifro+m111 ?he asumtAion ? _ T( Coh +n LLeme - itfolosjha 

Hence from the assumption k ? Coh7 and Lemma 4.1 it follows that 
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| e |12 < ? 
IIT|ATen111 < 

IITAX 
l(Un+l -,n+1~I 

2 

(4.11) + (1 + k) IITA;2e1II + Ilpn~"2II2 + 2(1 + k)112Ilpn~"2II IIT, 

An application of Lemma 3.3 with o- = T in (4.11) yields 

(4.12) max IITk/2e IA < C max IIT*,2(u- _ I'A)II + kIm II 12I 
l; sn; M l _ sn;: M l _-5n M 

from which (4.3) easily follows by an application of Lemma 3.2 and observing that 
(4.4) is valid for any n = 0, * * , M- 1. 

Discussion of Results. The bounds in the error estimates (3.6) and (4.3) involve 
certain norms of the solution u of problem (2.1). Under slightly stronger regularity 
assumptions on u (i.e., the data F = If, g, u0 } must be sufficiently regular) these 
norms on u can be bounded by certain Holder norms on the data (cf. Theorem 5.2 
on p. 320 of[11]). 

For the purely implicit scheme (3.2) suppose we take r = 4 and Sh4 to be cubic 
splines or the Hermite space of piecewise cubic polynomials ([4], [5], [9]). Then if 

u(, t) I. is bounded uniformly in t, with 2 < s < r, we have 
max I leln I I= O(kl/2h8-2 + k). 

-: On;5 M 

Hence, since k ? ac2/3h4 y3, we have that the error is of order 0(k) for s = 4 and 
3 = or for s = 3 andy = 

For the Crank-Nicolson scheme (4.1) we find that the error is 0(k2) if =4 
and I u(. , t)[ L4 is bounded uniformly in t. 

The Crank-Nicolson methods of [8] yield error estimates of the form 

max I le n = O(h28-1 + k2) 

where the solution of (2.1) satisfies u(., t) E H28 and the space of approximants 
consists of piecewise polynomials of degree 2s - 1 (on a mesh of width h). Thus if 
s = 2 (i.e., piecewise cubics) then the error is of order 0(k2) provided k ? Ch3/2. 
We should remark that the methods of [8] require the approximants to satisfy bound- 
ary conditions. 

The methods of [10] yield error estimates of the form 
{j Ie(. , t)l2 dt} = O(h 2s + ks) 

where u E H28 8(Q) (cf. [10]) and the admissible approximants consist of a certain 
class of splines which are piecewise polynomials of degree 2s - 1 in the space variables 
(on a mesh of width h) and of degree s - 1 in t (on a mesh of width k). Thus for 
s = 2 and k > Ch2 the error is of order 0(k2). We remark that the methods of [10] 
yield arbitrarily high order of accuracy (for sufficiently regular u) without requiring 
the admissible approximants to satisfy boundary conditions. 
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